I-43

THE REACTION OF URANIUM HEXAFLUORIDE WITH SILVER FLUORIDE IN ANHYDROUS HYDROGEN FLUORIDE AND THE CHEMICAL PROPERTIES OF THE PRODUCT Ag₂UF₈

John G. Malm

Chemistry Division, Argonne National Laboratory, Argonne, IL 60439 (U.S.A.)

UF₆ reacts with AgF dissolved in anhydrous hydrogen fluoride to precipitate Ag_2UF_8 . Ag_2UF_8 has some unexpected properties: On reaction with water it produces O_2 and reduced uranium. No adequate explanation could be found of why UF₆ and AgF combined in this manner should produce a powerful oxidant. Raman spectra and chemical properties of the solid products are given.

I-44

FLUORINATION OF URANIUM RESIDUES IN ISOTOPE ENRICHMENT PLANTS

W. Bacher, W. Bier, A. Maner

Institut für Kernverfahrenstechnik, Kernforschungszentrum Karlsruhe, D-7500 Karlsruhe 1 (F.R.G.)

E. Jacob

M.A.N. – Neue Technologie, D-800 Munich 50 (F.R.G.)

1 E.W. Becker, W. Bier, P. Bley, W. Ehrfeld, K. Schubert, D. Seidel (paper presented to the AIChE 1982 winter meeting, Orlando, Fla., Feb. 28 - March 3, 1982, also published as report KFK 3310 (1982)

One possible method to remove solid deposits of uranium hexafluoride decomposition products (UF₅, UO₂F₂·H₂O) which may be formed during long-time operation of uranium enrichment plants, is the application of a gaseous mixture of CBrF₃ and F₂ at a total pressure well below atmospheric pressure. The feasibility of this procedure has been demonstrated in technical components of the "Separation Nozzle"-process for the enrichment of U-235 which is under development at the Nuclear Research Center of Karlsruhe, w.-Germany.¹) The mixture of CBrF₃ and F₂ is not stable thermodynamically but shows slow decomposition which is catalyzed by metallic surfaces. The reaction CBrF₃ + 3F₂ + CF₄ + BrF₅ produces BrF₅, but the intermediate formation of BrF₃ seems reasonable. Since BrF₃ is a well known agent for the fluorination of uranium fluorides and oxifluorides into UF₆, but is hardly applicable because of its low vapour pressure, the system CBrF₃/F₂ offers the possibility to decontaminate isotope enrichment facilities from uranium residues.